231 research outputs found

    Dry-Milling and Fractionation of Transgenic Maize Seed Tissues with Green Fluorescent Protein as a Tissue Marker

    Get PDF
    The efficiency of fractionating cereal grains (e.g., dry corn milling) can be evaluated and monitored by quantifying the proportions of seed tissues in each of the recovered fractions. The quantities of individual tissues are typically estimated using indirect methods such as quantifying fiber or ash to indicate pericarp and tip cap contents, and oil to indicate germ content. More direct and reliable methods are possible with tissue-specific markers. We used two transgenic maize lines, one containing the fluorescent protein green fluorescent protein (GFP) variant S65T expressed in endosperm, and the other containing GFP expressed in germ to determine the fate of each tissue in the dry-milling fractionation process. The two lines were dry-milled to produce three fractions (bran-, endosperm-, and germ-rich fractions) and GFP fluorescence was quantified in each fraction to estimate the tissue composition. Using a simplified laboratory dry-milling procedure and our GFP-containing grain, we determined that the endosperm-rich fraction contained 4% germ tissue, the germ-rich fraction contained 28% germ, 20% endosperm, and 52% nonendosperm and nonembryo tissues, and the bran-rich fraction contained 44% endosperm, 13% germ, and 43% nonendosperm and nonembryo tissues. GFP-containing grain can be used to optimize existing fractionation methods and to develop improved processing strategies

    Green Fluorescent Protein as a Tissue Marker in Transgenic Maize Seed

    Get PDF
    Seed tissues (endosperm, embryo, and pericarp) are often separated into tissue-enriched fractions by wet- or dry-milling methods for use in food, feed, and industrial products. Seed tissue markers that are sensitive and readily quantifiable would be useful to optimize fractionation processes. To meet this need for tissue markers, we set out to produce and characterize different transgenic maize lines, each containing green fluorescent protein (GFP) in either endosperm or embryo. We examined mRNA transcripts using expressed sequence tag (EST) profiles of several major seed proteins and selected several with strong seed tissue preferences. Stably transformed maize lines were produced, and visual observation of fluorescence confirmed the presence of GFP in the desired tissues. To establish the utility of this grain for evaluating the effectiveness or separation efficiencies of fractionation processes, transgenic kernels were hand-dissected into pericarp, endosperm, and embryo fractions and the GFP concentration in each fraction was determined. The GFP distribution between fractions of each transgenic event was calculated from GFP concentration and mass balance, which enabled the determination of GFP yield based on the hand-dissection fractionation data and the amount of tissue contamination in each fraction. Our transgenic lines exhibited strong tissue preference for either embryo or endosperm. These lines should be useful for assessing separation efficiencies in maize fractionation processes

    Survey sequencing and radiation hybrid mapping to construct comparative maps.

    No full text
    In MURPHY WJ (ed.) Phylogenomics, Humana Press. (Methods in Molecular Biology, 422)International audienceRadiation hybrid (RH) mapping has become one of the most well-established techniques for economically and efficiently navigating genomes of interest. The success of the technique relies on random chromosome breakage of a target genome, which is then captured by recipient cells missing a preselected marker. Selection for hybrid cells that have DNA fragments bearing the marker of choice, plus a random set of DNA fragments from the initial irradiation, generates a set of cell lines that recapitulates the genome of the target organism several-fold. Markers or genes of interest are analyzed by PCR using DNA isolated from each cell line. Statistical tools are applied to determine both the linear order of markers on each chromosome, and the confidence of each placement. The resolution of the resulting map relies on many factors, most notably the degree of breakage from the initial radiation as well as the number of hybrid clones and mean retention value.A high-resolution RH map of a genome derived from low pass or survey sequencing (coverage from 1 to 2 times) can provide essentially the same comparative data on gene order that is derived from high-coverage (greater than x7) genome sequencing. When combined with fluorescence in situ hybridization, RH maps are complete and ordered blueprints for each chromosome. They give information about the relative order and spacing of genes and markers, and allow investigators to move between target and reference genomes, such as those of mouse or human, with ease although the approach is not limited to mammal genomes

    Erratum to: Comparative assessment of image quality for coronary CT angiography with iobitridol and two contrast agents with higher iodine concentrations: iopromide and iomeprol. A multicentre randomized double-blind trial

    Get PDF
    Unfortunately, there is amistake in the section Results, Clinical safety. While the text states that “no severe AEs were reported”, in fact one severe AE was reported in the iomeprol group (one severe injection site pain assessed as possibly related to contrast agent), as shown in Table 5. In addition, the name of the author Jean-François Paul was rendered incorrectly in the original publication but has since been corrected. The authors apologize for these mistakes

    In vitro- and ex vivo-derived cytolytic leukocytes from granzyme A x B double knockout mice are defective in granule-mediated apoptosis but not lysis of target cells

    Get PDF
    Granzyme (gzm) A and gzmB have been implicated in Fas-independent nucleolytic and cytolytic processes exerted by cytotoxic T (Tc) cells, but the underlying mechanism(s) remains unclear. In this study, we compare the potential of Tc and natural killer (NK) cells of mice deficient in both gzmA and B (gzmAxB-/-) with those from single knockout mice deficient in gzmA (-/-), gzmB (-/-), or perforin (-/-) to induce nuclear damage and lysis in target cells. With the exception of perforin-/-, all in vitro- and ex vivo-derived Tc and NK cell populations from the mutant strains induced 51Cr-release in target cells at levels and with kinetics similar to those of normal mice. This contrasts with their capacity to induce apoptotic nuclear damage in target cells. In gzmAxB-/- mice, Tc/NK-mediated target cell DNA fragmentation was not observed, even after extended incubation periods (10 h), but was normal in gzmA-deficient and only impaired in gzmB-deficient mice in short-term (2-4 h), but not long-term (4-10 h), nucleolytic assays. This suggests that gzmA and B are critical for Tc/NK granule- mediated nucleolysis, with gzmB being the main contributor, while target cell lysis is due solely to perforin and independent of both proteases

    Reversible Decrease of Portal Venous Flow in Cirrhotic Patients: A Positive Side Effect of Sorafenib

    Get PDF
    Portal hypertension, the most important complication with cirrhosis of the liver, is a serious disease. Sorafenib, a tyrosine kinase inhibitor is validated in advanced hepatocellular carcinoma. Because angiogenesis is a pathological hallmark of portal hypertension, the goal of our study was to determine the effect of sorafenib on portal venous flow and portosystemic collateral circulation in patients receiving sorafenib therapy for advanced hepatocellular carcinoma. Porto-collateral circulations were evaluated using a magnetic resonance technique prior sorafenib therapy, and at day 30. All patients under sorafenib therapy had a decrease in portal venous flow of at least 36%. In contrast, no specific change was observed in the azygos vein or the abdominal aorta. No portal venous flow modification was observed in the control group. Sorafenib is the first anti-angiogenic therapy to demonstrate a beneficial and reversible decrease of portal venous flow among cirrhotic patients
    corecore